Geometallurgy basics

for mineral processing applications

Introduction
Presented by: Alex Doll, Consultant
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ALL MODELS ARE WRONG,
BUT SOME ARE USEFUL.

Slide 2 2015-11-12



Geometallurgy
* Geometallurgy and grinding

— It is often desirable to be able to load ore hardness
information into the mine block model.

— Allows the mining engineers to better schedule ore
delivery to the plant, and to run more sophisticated
net present value calculations against ore blocks.

— Requires hundreds of samples from drill holes
distributed across the orebody.
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Geometallurgy
* Geometallurgy and plant recovery

— It is often desirable to be able to load leaching
information into the mine block model.

— Allows the mining engineers to run more
sophisticated net present value calculations against
ore blocks.

— Requires hundreds of samples from drill holes
distributed across the orebody.
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source: GEOVIA
Surpac brochure

* Geologic systems can be modelled as a
structure of equally sized blocks arranged in a
regular grid.
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Interpolation

* Interpolation is the mathematical method used
to estimate a parameter in the spaces between
known positions with known values.

— A simple interpolation method could be a linear
weighted average of the two nearest points.

— Geostatisticians use more complex methods, such
as kriging.
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Interpolation
* Consider the same * Try an inverse-

1-dimensional model distance-squared
with measurements weighting.
at points A&B.

o . X=(1/10)>xA + (1/23)*xB

-4 1/10)2+(1/23)?

X=1.16 g/t

10 m 23 m
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Interpolation

* Consider a
3-dimensional model
with measurements
at points A,B,C,D

* A'polygon’ displays : .
the rock unit that X
belongs to.
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nterpoatio by riging

* The most common
interpolation is some
form of kriging.

Data

* Kriging uses non-
linear, directional
interpolation
constrained by
domains. Model
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* Domains determined
for assay data may
not apply for process
parameters

* (Geostatisticians
should re-domain the
process data to verify.
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Check thé ddmains

* Example: Grade may
be determined by
alteration, but
grindability may be
determined by
tectonic stress fields.

* You must check!




Domains

40,

* Example grinding :
data, top from a
'hematite' domain and . . liE
bottom from a s
'magnetite’ domain. N
* Shapes are different
— confirms each must be gij_ e
interpolated separately. NG Gl SIS GO S B |
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* Collahuasi, Chile

— C. Suazo, Procemin

— C. Suazo, Procemin
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Example domain definitions

alteration

sericite, argillic, Chl-Ser
sericite, argillic, Chl-Ser
gtz-ser, propylitic, biot, K
qtz-ser, propylitic, biot, K

sericite, argillic, Chl-Ser

qtz-ser, propylitic, biot, K

lithology

intrusive
host rock
intrusive
host rock
intr.+host

intr.+host
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Variogram

* A variogram plots the average difference
between two arbitrary points and the distance
between the points.

A B C D
1g/t 1.5g/t 2 g/t 2.5 g/t

10 m 25 m 50 m
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Variogram

: > 2
* Warning: 5 e i
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* Plotting the Distance, m
example grade difference vs. distance from
earlier slide
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Variogram
15
* Slightly more _ -
(&)
correct S
version g 0> ) -
; . m .
0 10 20 30 40 50
Distance, m

* Y-axis shows variance
* The population variance is shown as the “sill”
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Variogram

* A published
variogram from
Adanac Moly
suggests that the
maximum spacing
between samples
should be 200 m or
less.

Slide 17

— Bulled, CMP 2007
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How many samples?

* Area of influence of a sample

— How “close by” must a sample be to have importance
in geostatistics.

— Observed as the location of the“sill” 3 4@
of a variogram of grindability
versus distance.

— So you should know the variogram AT

result of a geometallurgy program to
plan a geometallurgy program. ,4L._ —
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Geometallurgy basics

for mineral processing applications

Additive parameters

Slide 19 2015-11-12



Additivity

* Geostatistics only works if the values you are
“mixing” have a linear mixing characteristic.

* A parameter is “additive” if you can combine
two samples of a known value, and the blend
test results in the arithmetic average of the two.

— Eg. mix one sample “10” and a second sample “20”
— The blend should give a result of “15”
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Additivity
* Values suitable for block modelling

— Not all grindability results are suitable for block
model interpolation, they must be “additive”

* e.g. mixing two samples with “10” and “20” should
give “15”. Work index, SGI and Axb results do not
have this property.

— Specific energy consumption is generally additive,
so E..., Esac and/or E,; can be interpolated.
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Additivity of process parameters

* A variety of process models exist, and you can
create your own. You will need to evaluate
which models are useful for your mine.

— The process models need to make useful
predictions of process behaviour.

— The process models need to have additive
parameters suitable for geometallurgy.
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Geometallurgy program
* Procedure for a geometallurgy program:
— collect samples distributed around the orebody
— test in the laboratory, use at least 2 methods
— run all samples through comminution models

— distribute specific energy values into block model

— run geostatistical checks (variograms) and repeat (do a
second, in-fill, sample collection program)

— provide mining engineers with a model populated with
grindability values; run annual production forecasts.
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Geometallurgy basics

for mineral processing applications

Mine Planning by Geometallurgy
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The block model

* A block model containing geometallurgical
data will include:

— grindability information suitable for estimating the
maximum plant throughput,

— recovery information suitable for estimating the
metal production,

— (flotation plants) concentrate grade predictions for
smelter contracts.
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Grindability models
* Specific energy consumption models determine
how much energy is required to grind a sample.

—FE given in kW-h/t {alternative notation: kW/ (t/h)}

* Mill power models determine the amount of
grinding power available

— P given in kKW
* Dividing P by E gives the circuit throughput
— t/h = kW + (KW-h/t)
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Throughput predictions

* Grindability, in the form of specific energy,
will be interpolated for a block.

— in this example, E.,. = 6.0 kWh/t

* The metallurgists will supply the typical power
draw of the SAG mill (at the pinion).

— Yanacocha is about 14,000 kW
* Throughput = 14,000 kW + 16.0 kW =875 t/h
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Recovery models

R:Rmaxx(l_e_kt)

Recovery curves, Rmax=0.99

% recovery
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*

Net Smelter Return prediction

* The mining engineer can estimate the revenue of
a block using the recovery equation(s) and the
block model parameters.

— Gold recovery R is known by interpolation.
— Revenue=block mass (t) x grade (g/t) X recovery

* If there are penalty elements in the block model,
is may be necessary to estimate their recovery,
too.
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Block value prediction

* Determine the value of a block

— Revenue
* include penalties, if applicable
— Operating costs ($/t)
* include mill power draw, kWh/t x t/h x $/kWh

* include other operating costs

— Processing time can be included as a cost penalty

* revenue form harder blocks worth less than revenue from
softer blocks.
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New cut-off calculation

* The variable revenue benefits blocks with
good recovery characteristics.

* The variable grindability benefits blocks with
lower power consumption.

* Applying a penalty for difficult to process
blocks benetfits easy to process blocks.
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Benetfits of geometallurgy

* Permits future production to be accurately
predicted. Future sales can be estimated.

* Identifies “problem” areas within the mine
where throughput may be low or recovery may
suffer.

* Allows better optimized mine plans with more
accurate NPV predictions per block.
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Variable mining rate

* Operate the mine to keep the SAG mills full.

* A grinding geometallurgy database allows mine
planners to schedule more ore to the mill.

— Do not plan a “nominal” throughput rate for the whole
mine life...

— mine more in years with soft ore, and
— mine less in years with hard ore.

— If possible, defer hard ore until later in the mine life.
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Variable gold profduction

* The gold production in each year of a mine life

wil

b
b

b

oc]
oc]
ocC

K gold grade,
K gold recovery,

K throughput calculated from tl

* The pit optimizing software will
towards softer ore with better recovery.
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Summary of benefits

The pit shape and equipment fleet will change
due to the new NPV equations,

the pit will probably be mined more rapidly,
production is advanced into earlier mine years,

a more optimal pit shape will all result from a
fully applied geometallurgy program, and

Nno nasty surprises.
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Stages of a geometalllirgy program

Decide which process parameters to collect

— plant surveys, fitting models to plant data
* Conduct a drilling program to obtain samples of future ore
* Conduct a laboratory program determining parameters for samples
* Supply geostatisticians the parameters and their spatial locations
* Interpolate the parameters into the block model

— check variograms, conduct in-fill drilling and recycle

* Generate a mine plan with a variable ore throughput

* Generate a cash flow with a variable gold production rate
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Cost of a geometallurgy program

* Plant surveys, engineering time fitting models to plant data

* drilling program to obtain samples of future ore

* laboratory program determining parameters for samples

* (Geostatistician time to interpolate parameters into the block model
— check variograms, conduct in-fill drilling and recycle

* Mine engineering time to generate a mine plan

* Sustaining capital cost of mine fleet needed to support variable
throughput rates
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Geometallurgy for scoping studies

* Early project evaluation will not use a full
program:

— Use about 5-15 intervals of half-core (from the
resource drilling program).

— Do laboratory work for one set of process models.

— Unlikely enough data will exist to do variograms
or kriging. Work with cumulative distributions
instead of geometallurgy:.
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* Collect at least 50 more half-core samples from the
resource drilling.

— The quantity should be sufficient to permit creation of
variograms.

— Do the first circuit of the geometallurgy program stages, but
exclude the recycle.

— Determine how much of the orebody is unrepresented by
samples.

— Do the variable rate mine plan and gold production schedule.
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* Using the variograms from prefeasibility,
determine how many more samples are needed

— These extra samples should be dedicated
metallurgical drilling. Use the whole core for a
greater variety of metallurgical tests.

* Do the “recycle” loop and determine updated
variable rate mine plans and gold production.
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* Do the program indicated for prefeasibility and
feasibility to establish the initial mine plans.

* Do annual drilling to keep extending into the
next 5 years of future ore.

* Revise the process models (did they work?).

* Revise the mine plans based on the updated
geometallurgy database.
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Examples of geometallurgy

* Los Bronces, Confluencia (Chile)

— Design of pit for an expansion project included
plant recovery and ore grindability parameters.

* Collahuasi (Chile)

— Monthly throughput predictions are within 5% of
actual.
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Examples of geometallurgy

* Freeport-McMoRan study

— Geometallurgical database used to compare SAG
milling to HPGR in a detailed study.

* Andina, Piuquenes tailings (Chile)

— Recovery and regrind energy for re-mining a
tailings pond.
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Escondida variograms

Preece, 2006
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Examples of geometallurgy

* Los Bronces, Rajos Infiernillo & Donoso
Modelamiento y estimacion

Unidades geometallrgicas
UGMs Crusher UGMs
UGMsde |UGMsSPI,BWI Index UGMs Sulfuros|  Sulfuros
Flotacion Primarios Secundarios
6015 20 80 6015 1
6020 40 91 6020 2
e _ 3515 80 111 3515 3
T e 3520 91 112 3520 4
g 4020 101 113 4020 5
8015 102 114 8015
9115 103 9115
104
105
106

Rocha et al.

Litologia Litologia | Litologia Litologia Litologia

| Redox Sélidos Redox Redox Redox GEOMET2012
Estilo Mxx Textura Textura Estilo Mxx Solidos
Indicadores
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Examples of geometallurgy

* Adanac Molybdenum, Canada

— Flotation model using interpolated parameters:
* kK, R
* k, R

value for molybdenum

max

value for non-sulphide gangue

max

— Different models run at different grind Py, sizes

* k, R_.. values change at each Py,

max
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Final thoughts
* Grade proxies and process mineralogy are

often called geometallurgy, but they are
different

— Grade proxy is where a process variable (eg.
recovery) is closely related to a grade (%Cu)

— Process mineralogy is a careful mapping of
minerals (rather than elements)

* useful to predict recoveries, rate constants, etc.
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ALL MODELS ARE WRONG,
BUT SOME ARE USEFUL.
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