A public Database of tumbling mill grindability measurements and their relationships

Alex Doll1*
1. Consultant, Alex G. Doll Consulting Ltd. Canada

ABSTRACT

This work presents a public database of over 800 grindability measurements and a set of equations for converting between different grindability tests based on this database. Several laboratory grindability measurements commonly used in the mining industry; each is generally applicable to a particular grindability model and is incompatible with other models. Conversion between different test types is possible using a series of empirical relationships between those tests conducted at similar size classes.

The commonly used grindability tests included in the database are the Bond work indices for ball milling, rod milling and crushing; the drop weight test results A, b, A×b, DWi, Mia, Mic, Mih and ta; SAG grindability index, SGI or SPI™; and other values such as Mib and point load index.

Some examples of power-based model specific energy predictions will be compared to published mill surveys to observe how well the different models predict the specific energy of an industrial mill.

Key words: Database, laboratory test, comminution, specific energy, models predict.
INTRODUCTION

Grindability measurements are a key input to the design and optimization of mineral process plants. As such, grindability parameters are often reported in published documents such as technical papers (here at Procemin) and in project evaluation reports such as the NI43-101 reports issued by companies listed on Canadian stock exchanges. Collecting and comparing these published grindability measurements provides a basis for basic research, such as calibration of specific energy models, and for benchmarking new projects.

Several specific energy consumption models have been published that require empirical laboratory measurements; often models use grindability measurements that are distinct from other models and incompatible with certain laboratory tests. Another benefit of collecting a database of grindability measurements is to provide relationships for comparing and, possibly, converting between the different measurement types.

METHOD

Grindability results have been collected from a large number of published documents. These have been entered into a database containing discrete tables for each class of test and where the test results are indexed using a `sample name` to link multiple tests performed on the same sample. If the report offers geological or other differentiating characteristics of a sample, these are captured in a `lithology` table. The database includes a summary `view` that consolidates the sample name, a unique ID number for the sample, the originating project or mine, and some of the most common grindability measurements. All tests on the same sample are identified with the same ID number, so the relationship between tests on the same sample can be tracked across the different database tables.

The database includes fields for optional details of the various tests. These optional data are entered in the database if they are published, and are left blank otherwise. Few authors provide a complete tabulation of the test details, so many of the detail fields are blank.

Example data from the Lithology table is given in Table 1 where the sample's name, ID number, the sample lithology (where it is known), and reference information is provided. The summary view for these samples is given in Table 2. Note that the ID numbers in this table match the ID numbers in Table 1 (and all the other database tables).
Table 1 Example Lithology database table

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Litho</th>
<th>Litho comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1529</td>
<td>Lik composite 7</td>
<td>Zazu metals NI43-101 March 3, 2014</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>Gamsberg Pyrite</td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1601</td>
<td>Gamsberg Pyrrhotite</td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1602</td>
<td>Gamsberg Magnetite</td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1605</td>
<td>Huckleberry SAG feed 2012</td>
<td>Wang et al, CMP 2013</td>
<td></td>
</tr>
<tr>
<td>1606</td>
<td>Huckleberry HPGR product</td>
<td>Wang et al, CMP 2013</td>
<td></td>
</tr>
<tr>
<td>1607</td>
<td>Cadia Hill</td>
<td>Englehardt et al, SAG 2011 speaker notes</td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td>Ridgeway</td>
<td>Englehardt et al, SAG 2011 speaker notes</td>
<td></td>
</tr>
<tr>
<td>1609</td>
<td>Cadia East</td>
<td>Englehardt et al, SAG 2011 speaker notes</td>
<td></td>
</tr>
<tr>
<td>1643</td>
<td>53392-2</td>
<td>Metasediments</td>
<td>Alacer Gold NI43-101 July 29, 2014</td>
</tr>
</tbody>
</table>

Table 2 Summary view of major grindability results for example samples

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>Program</th>
<th>WiBM</th>
<th>WiRM</th>
<th>WiC</th>
<th>Density</th>
<th>Axb</th>
<th>SGI</th>
<th>Ai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1529</td>
<td>Lik composite 7</td>
<td>Lik</td>
<td>13.9</td>
<td>13.6</td>
<td>6.8</td>
<td>67.3</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>Gamsberg Pyrite</td>
<td>Other</td>
<td>13.25</td>
<td>3.52</td>
<td>79.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1601</td>
<td>Gamsberg Pyrrhotite</td>
<td>Other</td>
<td>12.9</td>
<td>3.42</td>
<td>58.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1602</td>
<td>Gamsberg Magnetite</td>
<td>Other</td>
<td>13.9</td>
<td>3.61</td>
<td>67.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1603</td>
<td>New Gold Hypogene</td>
<td>Other</td>
<td>21.8</td>
<td>18.5</td>
<td>8</td>
<td>2.7</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1604</td>
<td>New Gold Mesogene</td>
<td>Other</td>
<td>19.8</td>
<td>18.3</td>
<td>8</td>
<td>2.77</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1605</td>
<td>Huckleberry SAG feed 2012</td>
<td>Huckleberry</td>
<td>18</td>
<td>2.76</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1606</td>
<td>Huckleberry HPGR product</td>
<td>Huckleberry</td>
<td>15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1607</td>
<td>Cadia Hill</td>
<td>Cadia</td>
<td>17.5</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td>Ridgeway</td>
<td>Cadia</td>
<td>18.7</td>
<td>21</td>
<td>30</td>
<td>42</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1609</td>
<td>Cadia East</td>
<td>Cadia</td>
<td>20.3</td>
<td>29</td>
<td>30</td>
<td>29.7</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1643</td>
<td>53392-2</td>
<td>Çöpler</td>
<td>13</td>
<td>2.58</td>
<td>84.6</td>
<td>76.7</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Bond ball mill work index database table for example samples

<table>
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>WiBM µclosing</th>
<th>WiBM f80</th>
<th>WiBM p80</th>
<th>WiBM gpr</th>
<th>WiBM</th>
<th>Synthetic</th>
<th>Laboratory</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1529</td>
<td>Lik composite 7</td>
<td>13.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALS Kamloops</td>
<td>Zazu metals NI43-101 March 3, 2014</td>
</tr>
<tr>
<td>1600</td>
<td>Gamsberg Pyrite</td>
<td>106</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>Gamsberg Pyrite</td>
<td>150</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1601</td>
<td>Gamsberg Pyrrhotite</td>
<td>106</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1601</td>
<td>Gamsberg Pyrrhotite</td>
<td>150</td>
<td>12.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1602</td>
<td>Gamsberg Magnetite</td>
<td>106</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1602</td>
<td>Gamsberg Magnetite</td>
<td>150</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>van Drunick Gerold & Palm, IMPC2010</td>
<td></td>
</tr>
<tr>
<td>1605</td>
<td>Huckleberry SAG feed2012</td>
<td>106</td>
<td>2578</td>
<td>77</td>
<td>0.99</td>
<td>18</td>
<td></td>
<td>SGS Lakefield</td>
<td>Wang, Nadolski, Mejia, Drozdiak & Klein, CMP 2013</td>
</tr>
<tr>
<td>1606</td>
<td>Huckleberry HPGR product</td>
<td>106</td>
<td>2302</td>
<td>76</td>
<td>1.2</td>
<td>15.4</td>
<td></td>
<td>SGS Lakefield</td>
<td>Wang, Nadolski, Mejia, Drozdiak & Klein, CMP 2013</td>
</tr>
<tr>
<td>1607</td>
<td>Cadia Hill</td>
<td>17.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Englehardt et al, SAG 2011 speaker notes</td>
<td></td>
</tr>
<tr>
<td>1608</td>
<td>Ridgeway</td>
<td>18.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Englehardt et al, SAG 2011 speaker notes</td>
<td></td>
</tr>
<tr>
<td>1609</td>
<td>Cadia East</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Englehardt et al, SAG 2011 speaker notes</td>
<td></td>
</tr>
<tr>
<td>1643</td>
<td>53392-2</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SGS Lakefield</td>
<td>Alacer Gold NI43-101 July 29, 2014</td>
</tr>
</tbody>
</table>
Database field definitions

Common fields in several of the database tables include:

- **Id** – The unique index number of this sample.
- **Name** – The human-readable sample name.
- **Synthetic** – Is this a ‘fake’ sample, such as a mathematical average of actual test results?
- **Laboratory** – The laboratory where a particular test determination was performed.
- **Comment** – The document reference where the data originated or other comments.

The ‘summary’ database table includes the following fields:

- **Program** – The project or mine this sample belongs to. Some samples belong to a ‘other’ group as they do not have many related samples.
- **WiBM** – The Bond ball mill work index, in metric units.
- **WiRM** – The Bond rod mill work index, in metric units.
- **WiC** – The Bond impact crushing work index, in metric units.
- **Density** – The coarse particle density measured in either the Bond impact crushing work index test or the drop weight test, t/m³.
- **Axb** – The product of the ‘A’ and ‘b’ parameters from a drop weight test, unitless.
- **Mia** – The coarse tumbling particle coefficient for a Morrell power equation, kWh/t.
- **Mib** – The fine tumbling particle coefficient for a Morrell power equation, kWh/t.
- **CI** – The Minnovex crushing index determined as part of a SPI™ determination, unitless.
- **SGI** – The SAG Grindability Index or SAG Power Index™, minutes.
- **Ai** – The Bond abrasion index, unitless.

The ‘litho’ database table includes the following fields:

- **Drillhole** – Identifier of the drill hole a sample originated from.
- **Dist from** – Downhole position where a sample originated from, m.
- **Dist to** – Downhole position where a sample originated from, m.
- **Litho** – Lithology identifier for a sample.
- **Alteration** – Alternation regime identifier for a sample.
- **Zone** – Zone identifier for a sample.
- **Length** – Downhole contiguous length of a sample, m

The ‘ai’ database table includes the following field:

- **Ai** – Bond abrasion index, unitless.
The `dwt` (drop weight test) table includes the following fields:

- **A** – The fitted coefficient of a “t
 10
 versus Ecs” curve in a drop weight test.
- **b** – The fitted exponent of a “t
 10
 versus Ecs” curve in a drop weight test.
- **Ax
 b** – The product of the fitted **A** and **b** parameters in a drop weight test.
- **ta** – The abrasion resistance measurement of a JK DWT™.
- **DWT density** – The coarse particle density determined in a drop weight test, t/m³.
- **SMC** – Boolean field indicating of this is a SMC Test™ result (value = 1 for SMC).
- **DWI** – The Drop Weight Index determination for a sample, kWh/m³.
- **Mia** – The coarse tumbling particle coefficient for a Morrell power equation, kWh/t.
- **Mih** – The high pressure grinding roll coefficient for a Morrell power equation, kWh/t.
- **Mic** – The crushing coefficient for a Morrell power equation, kWh/t.

The `pli` (point load index) table includes the following fields:

- **# Specimens** – The quantity of specimens tested for a particular sample.
- **PLI** – The mean IS
 50
 value of a set of specimens, MPa.
- **PLI Min** – The minimum IS
 50
 value of a set of specimens, MPa.
- **PLI Max** – The maximum IS
 50
 value of a set of specimens, MPa.
- **Std Dev** – The standard deviation of IS
 50
 values in a set of specimens, MPa.

The `sgi` (SAG grindability index) table includes the following fields:

- **CI** – The Minnovex crushing index determined as part of a SPI™ determination, unitless.
- **SGI** – The SAG Grindability Index or SAG Power Index™, minutes.

The `ucs` (unconfined or uniaxial compressive strength) table includes the following fields:

- **# Specimens** – The quantity of specimens tested for a particular sample.
- **UCS** – The mean unconfined pressure of sample failure of a set of specimens, MPa.
- **UCS Min** – The minimum pressure of sample failure of a set of specimens, MPa.
- **UCS Max** – The maximum pressure of sample failure of a set of specimens, MPa.
- **Std Dev** – The standard deviation of pressure of sample failure in a set of specimens, MPa.

The `wibm` (ball mill work index) table includes the following fields:

- **WiBM µclosing** – The closing screen size used in the test, µm.
- **WiBM f80** – The test feed 80% passing particle size, µm.
- **WiBM p80** – The test product 80% passing particle size, µm.
- **WiBM gpr** – The test average grams per revolution of the final cycles, g/rev.
- **WiBM** – The Bond ball mill work index determination, metric units.
• **Mod BWI** – Boolean field indicating if this is a non-standard test, such as an open-cycle “modified BWI” test or a SAGDesign test with non-standard size distribution of the feed.

The `wic` (crushing work index or low energy impact work index) table includes the following fields:

- **# Specimens** – The quantity of specimens tested for a particular sample.
- **WiC** – The mean crushing work index of a set of specimens, metric units.
- **WiC Min** – The minimum crushing work index of a set of specimens, metric units.
- **WiC Max** – The maximum crushing work index of a set of specimens, metric units.
- **Std Dev** – The standard deviation of crushing work index of a set of specimens, metric units.
- **WiC density** – The coarse particle density measured in a crushing work index test, t/m³.

The `wirm` (rod mill work index) table includes the following fields:

- **WiRM µclosing** – The closing screen size used in the test, µm.
- **WiRM f80** – The test feed 80% passing particle size, µm.
- **WiRM p80** – The test product 80% passing particle size, µm.
- **WiRM gpr** – The test average grams per revolution of the final cycles, g/rev.
- **WiRM** – The Bond rod mill work index determination, metric units.

The rod mill work index table includes results from laboratories whose apparatus does not conform to Bond’s original specification. The most significant deviation is several laboratories in Australia use a mill without a wave liner – the liner specified by Bond.

RESULTS AND DISCUSSION

The entire database is too large to tabulate in this document (it would be over 200 pages), so instead it is freely available for download as an OpenDocument spreadsheet on the author’s website at this link: https://www.sagmilling.com/articles/28/view/?s=1. The database will be updated periodically and the latest revision will always be available at the web link.

Comparisons and regression equations between different grindability metrics appear in Figures 1 through 9. The comparisons only consider tests done in the same size classes as defined by Doll & Barratt, 2009. Linear, logarithmic, exponential and power regression relationships are attempted on all plotted pairs and the relationship with the highest R² value is displayed.
Fine size class:
Morrell Mib versus Bond ball mill work index.
Variation expected due to different exponents in the two equations.

No relationship between Bond abrasion index and ball mill work index.

Medium size class:
Best relationship requires separating the Bond-type mills with wave liners from the non-standard mills.
Generally a good relationship between the two parameters.

![Figure 4](image4.png)

Figure 4 SAG Grindability Index v. Drop weight A×b

Compares the Mia parameter determined from the SMC test™ used in Morrell power equations to the A×b parameter reported from any drop weight test (both SMC test™ and the JK DWT are drop weight tests).

![Figure 5](image5.png)

Figure 5 Morrell Mia v. Drop weight A×b

DWI is a volumetric parameter (kWh/m³) determined from the SMC test™. Dividing DWI by the sample density gives a mass parameter (kWh/t) suitable for comparing to A×b.

![Figure 6](image6.png)

Figure 6 (Morrell DWI ÷ density) v. Drop weight A×b
Only regression for Bond-type apparatus shown. Too few examples of samples tested on both the non-standard rod mill apparatus and the SAG Grindability Index.

Morrell’s crushing parameter Mic is (perfectly?) related to the drop weight test $A \times b$ determination.

Coarse size class:
Noisy data with poor overall relationship.

Specific energy predictions
Some of the samples that include all the parameters for Bond work indices, SMC tests and SGI values were run against different power-based specific energy models using SAGMILLING.COM software. The samples were run in a circuit consisting of mills based on Los Bronces Confluencia.
operating in an SABC-B configuration grinding from feed F_{80} of 150 mm to a cyclone overflow product P_{80} of 180 µm. No attempt to optimize any of the simulations was done.

Table 4 Example specific energy predictions by three models

<table>
<thead>
<tr>
<th>Name</th>
<th>Wi_{BM}</th>
<th>Wi_{RM}</th>
<th>Wi_c</th>
<th>$A\times b$</th>
<th>SGI</th>
<th>M_s</th>
<th>M_o</th>
<th>M_i</th>
<th>M_j</th>
<th>M_k</th>
<th>Model E_{total} kWh/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Bronces median</td>
<td>16.5</td>
<td>16.7</td>
<td>10.0</td>
<td>30.0</td>
<td>130.0</td>
<td>19.2</td>
<td>24.8</td>
<td>20.5</td>
<td></td>
<td></td>
<td>15.3</td>
</tr>
<tr>
<td>Antapaccay UGM 1</td>
<td>17.6</td>
<td>13.5</td>
<td>5.6</td>
<td>47.1</td>
<td>79.4</td>
<td>12.3</td>
<td>16.9</td>
<td>12.3</td>
<td></td>
<td></td>
<td>15.0</td>
</tr>
<tr>
<td>Antapaccay UGM 2</td>
<td>16.7</td>
<td>13.5</td>
<td>5.7</td>
<td>54.8</td>
<td>74.5</td>
<td>10.5</td>
<td>14.8</td>
<td>10.5</td>
<td></td>
<td></td>
<td>14.2</td>
</tr>
<tr>
<td>Antapaccay UGM 3</td>
<td>15.5</td>
<td>11.6</td>
<td>5.2</td>
<td>44.1</td>
<td>72.7</td>
<td>13.1</td>
<td>17.8</td>
<td>13.1</td>
<td></td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td>Antapaccay UGM 4</td>
<td>14.7</td>
<td>12.1</td>
<td>7.9</td>
<td>53.1</td>
<td>72.4</td>
<td>10.9</td>
<td>15.2</td>
<td>10.9</td>
<td></td>
<td></td>
<td>12.1</td>
</tr>
<tr>
<td>Antapaccay UGM 5</td>
<td>10.0</td>
<td>10.8</td>
<td>7.3</td>
<td>64.9</td>
<td>61.0</td>
<td>8.9</td>
<td>12.8</td>
<td>8.9</td>
<td></td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>Antapaccay UGM 6</td>
<td>14.6</td>
<td>14.3</td>
<td>8.2</td>
<td>47.5</td>
<td>90.8</td>
<td>12.2</td>
<td>16.8</td>
<td>12.2</td>
<td></td>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td>Boddington Apr 2010</td>
<td>14.4</td>
<td>20.0</td>
<td>27.7</td>
<td>30.0</td>
<td>130.9</td>
<td>19.2</td>
<td>24.7</td>
<td>17.7</td>
<td></td>
<td></td>
<td>16.2</td>
</tr>
<tr>
<td>Volta Grande comp 2-3</td>
<td>16.5</td>
<td>16.0</td>
<td>20.0</td>
<td>30.6</td>
<td>133.2</td>
<td>18.9</td>
<td>24.3</td>
<td>18.9</td>
<td></td>
<td></td>
<td>15.9</td>
</tr>
<tr>
<td>Huckleberry SAG feed 2</td>
<td>18.0</td>
<td>16.3</td>
<td>7.0</td>
<td>31.1</td>
<td>125.2</td>
<td>18.6</td>
<td>24.0</td>
<td>25.6</td>
<td></td>
<td></td>
<td>16.5</td>
</tr>
<tr>
<td>Malartic Sep 21 survey</td>
<td>16.3</td>
<td>16.3</td>
<td>18.5</td>
<td>24.1</td>
<td>115.3</td>
<td>23.9</td>
<td>29.8</td>
<td>23.9</td>
<td></td>
<td></td>
<td>13.4</td>
</tr>
<tr>
<td>Yanacocha</td>
<td>17.5</td>
<td>13.8</td>
<td>10.0</td>
<td>72.9</td>
<td>43.5</td>
<td>7.9</td>
<td>12.3</td>
<td>25.3</td>
<td></td>
<td></td>
<td>15.4</td>
</tr>
<tr>
<td>Meadowbank Vault</td>
<td>13.9</td>
<td>15.9</td>
<td>10.0</td>
<td>40.9</td>
<td>86.4</td>
<td>14.1</td>
<td>19.0</td>
<td>14.1</td>
<td></td>
<td></td>
<td>13.2</td>
</tr>
<tr>
<td>Corani avg</td>
<td>15.1</td>
<td>10.2</td>
<td>6.3</td>
<td>111.0</td>
<td>35.6</td>
<td>5.2</td>
<td>8.1</td>
<td>5.2</td>
<td></td>
<td></td>
<td>11.8</td>
</tr>
</tbody>
</table>

Italics indicate test parameters based on interpolations (Figures 1 through 9) or assumed.

This particular sub-set of the overall database shows the Optimized Bond/Barratt model and the Amelunxen SGI model are generally very close in their specific energy consumption predictions (average absolute difference is 6.4%), but the Morrell Mi model is substantially different from the other two models (average absolute difference of 20.4% versus Bond/Barratt and 20.6% versus SGI).
The Author’s experience is that any ore sample can potentially confuse any grindability test, so the observation that the Morrell Mi model is substantially different from the other two is likely an artifact of the sub-set of results that were chosen for Table 4. One might observe a different pattern had a different set of samples been chosen for the specific energy consumption calculations.

![Figure 10 Specific energy consumption predictions for three models](image)

Figure 10 Specific energy consumption predictions for three models

CONCLUSIONS

A large quantity of grindability test results have been published in conference proceedings, NI43—101 reports and other works. The author has collected and collated over 800 examples of such published grindability results and generated a public database of test results suitable for benchmarking other projects or performing research such as extracting relationships between the different test parameters.

The database is freely available for download as an OpenDocument spreadsheet on the author’s website at this link: https://www.sagmilling.com/articles/28/view/?s=1

ACKNOWLEDGEMENTS

SPI™ and SAG Power Index™ are trademarks of SGS Mineral Services.

SMC Test™ is a trademark of SMC Testing Pty Ltd.
REFERENCES

International Conference on Autogenous and Semiautogenous Grinding Technology (pp. I-11 – I-30) Vancouver, Canada.

International Conference on Autogenous and Semiautogenous Grinding Technology (pp. IV-316 – IV-335) Vancouver, Canada.

Project reports

The following are project reports that are downloaded from the Canadian Securities Administrators SEDAR filing system (http://www.sedar.com) unless otherwise noted. The bold text indicates the property name where the grindability data is indexed in the database.

NI43-101 report on the Ajax project, prepared for KGHM Polska Miedź S.A. and Abacus Mining and Exploration Corporation 2016-02-19 by M3 Engineering & Technology Corporation, Tucson, USA.

NI43-101 report on the Albany Graphite project, prepared for Zenyatta Ventures Ltd. 2015-07-09 by RPA Inc., Toronto, Canada.

NI43-101 report on the Rose deposit, Mills Lake Deposit on the Kamistiatusset Iron Ore property, prepared for Alderon Iron Ore Corp. 2012-12-17 by BBA Inc., Montréal, Canada.

NI43-101 report on the **Aurora Gold** project, prepared for Guyana Goldfields, Inc. 2013-01-29 by Tetra Tech Inc. (undisclosed origin).

NI43-101 report for the **Back River** gold property, prepared for Sabina Gold & Silver Corp. 2014-03-04 by Tetra Tech, Vancouver, Canada.

NI43-101 report on the **Brucejack** Project, prepared for Pretium Resources Inc. 2013-06-21 by Tetra Tech, Vancouver, Canada.

NI43-101 report on the **Buriticá** gold project, prepared for Continental Gold Inc. 2015-08-07 by Mining Associates Pty Ltd., Spring Hill, Australia.

NI43-101 report on the **Cameron Gold** project, prepared for Coventry Resources Ltd. and Crescent Resources Corp. 2012-07-05 by Datageo Geological Consultants, Mullaloo, Australia.

NI43-101 report on the **Canadian Malartic** property, prepared for Agnico Eagle and Yamana Gold 2014-06-16 by Canadian Malartic GP, Val-d’Or, Canada.

NI43-101 report on the **Çöpler** Sulfide Expansion Project, prepared for Alacer Gold Corp. 2014-07-29 by Jacobs Engineering Group, Denver, USA.

NI43-101 report on the **Copper Creek** Resource, prepared for Redhawk Copper Inc. 2013-07-25 by SGS Metcon/KD Engineering, Tucson, USA.

NI43-101 report on the **Copper Mountain** project, prepared for Copper Mountain Mining Corp 2008-09-11 (also referenced in 2009 reports) by KWM Consulting Inc., Pitt Meadows, Canada.

NI43-101 report on the **Corani** project, prepared for Bear Creek Mining Corporation 2015-05-30 by M3 Engineering & Technology Corporation, Tucson, USA.

NI43-101 report on the **Cosmo Deep**s gold project, prepared for Crocodile Gold Corp. 2013-12-31 by Mining Plus Pty Ltd., Melbourne, Australia.

NI43-101 report on the **Detour Lake** mine, prepared for Detour Gold Corporation 2012-10-18 by BBA Inc., Montréal, Canada.
NI43-101 report on the **Dumont** project, prepared for Royal Nickel Corporation 2012-07-18 by Ausenco Solutions Canada Inc., Vancouver, Canada.

NI43-101 report on the **Duparquet** project, prepared for Clifton Star Resources Inc. 2014-03-26 by InnovExplo, Val-d’Or, Canada.

NI43-101 report for the **Grassy Mountain** project, prepared for Calico Resources Corp. 2015-07-09 by Metal Mining Consultants, Inc., Highlands Ranch, USA.

NI43-101 report for the **Harper Creek** copper project, prepared for Yellowhead Mining Inc. 2011-03-31 by Wardrop Engineering Inc., Vancouver, Canada.

NI43-101 report for the **Harper Creek** copper project, prepared for Yellowhead Mining Inc. 2012-03-29 by Merit Consultants International Inc., Vancouver, Canada.

NI43-101 report on the Main Zone Optimization, **Huckleberry** Mine, prepared for Huckleberry Mines Ltd. and Imperial Metals Corporation 2011-09-01 by K. Christensen, G.R. Connaughton and P. Ogryzlo.

NI43-101 report for the **Karma** Gold Project, prepared for True Gold Mining Inc. 2014-10-10 by P&E Mining Consultants Inc., Brampton, Canada.

NI43-101 report for the **Krumovgrad** project, prepared for Dundee Precious Metals Inc. 2014-03-21 by CSA Global (UK) Ltd. Horsham, UK.

NI43-101 report on the **Los Helados** property, prepared for NGEx Resources Inc. 2013-10-31 by Behre Dolbear International Ltd., Santiago, Chile.

NI43-101 report on the **Lucky Friday** Mine, prepared for Hecla Mining Company 2014-04-02 by Hecla Mining Company, Coeur d’Alene, USA.
NI43-101 report for the **Magino** Project, prepared for Argonaut Gold Inc. 2013-12-17 by JDS Energy & Mining Inc., Vancouver, Canada.

NI43-101 report on the **Maracás** Vanadium Project, prepared for Largo Resources Ltd. 2013-03-04 by Runge Pincock Minarco (Canada) Ltd., Toronto, Canada.

NI43-101 report on the **Mercedes** gold-silver project, prepared for Yamana Gold Inc. 2014-02-25 by RPA Inc., Toronto, Canada.

NI43-101 report on the **Metates** Gold-Silver Project, prepared for Chesapeake Gold Corp. 2013-03-13 by M3 Engineering & Technology Corporation, Tucson, USA.

NI43-101 report on the **Montagne d’Or** gold deposit, Paul Isnard Project, prepared for Nord Gold N.V. and Columbus Gold Corporation 2015-07-31 by SRK Consulting (U.S.) Inc., Lakewood, USA.

NI43-101 report on the **Namoya** Gold project, prepared for Banro Corporation 2013-12-31 by Venmyn Deloitte (Pty) Ltd., Woodmead, South Africa.

NI43-101 report on **Niobec** Expansion, prepared for Iamgold Corporation 2013-12-10 by Iamgold Corp., Longueuil, Canada and Niobec Inc., St-Honoré, Canada.

NI43-101 report on the **Palmarejo** Project, prepared for Coeur Mining 2014-12-31 by Coeur Mining Inc.

NI43-101 report on the **Platreef** project, prepared for Ivanhoe Mines Ltd. 2014-03 by OreWin Pty Ltd., Adelaide, Australia.

NI43-101 report on the **Quimsacocha** Gold Project, prepared for Iamgold Corporation 2009-02 by Iamgold Technical Services, Longueuil, Canada.

NI43-101 report on the **Rainy River** project, prepared for Rainy River Resources Ltd. 2012-06-04 by SRK Consulting (Canada) Inc. Toronto, Canada.

NI43-101 report on the **Sabodala** gold project, prepared for Teranga Gold Corporation 2014-03-13 by AMC Consultants (Canada) Ltd., Toronto, Canada.

NI43-101 report on the **Snelgrove Lake** property, prepared for Mamba Minerals Limited 2013-12-20 by King and Bay West Management Corp. and BBA Inc., Montréal, Canada.

NI43-101 report on the **Spanish Mountain** project, prepared for Spanish Mountain Gold Ltd. 2010-12-20 by AGP Mining Consultants Inc., Barrie, Canada.

NI43-101 report on the **Tulsequah Chief** deposit, prepared for Chieftain Metals Inc. 2010-11-08 by SRK Consulting (Canada) Inc., Vancouver, Canada.

NI43-101 report for the **Turnagain** project, prepared for Hard Creek Nickel Corporation 2011-12-02 by AMC Mining Consultants (Canada) Ltd., Vancouver, Canada.

NI43-101 report on the **Volta Grande** project, prepared for Belo Sun Mining Corp. 2014-03-31 by AGP Mining Consultants Inc., Barrie, Canada.
NI43-101 report on the White Foil project, prepared for La Mancha Resources Inc. 2009-02 by La Mancha Resources Inc. Montréal, Canada.

NI43-101 report on the Zafranal project, prepared for AQM Copper Inc. 2013-01-16 by Tetra Tech Wardrop, Vancouver, Canada.