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ABSTRACT

Many power-based grinding models exist, and most operators are familiar with Fred Bond's "third 
theory".  Bond's model is most commonly used to describe primary and secondary grinding to product  
sizes  above, for example,  100 µm.  Operators sometimes use Bond's equation to describe grinding in 
situations where it is not appropriate, such as fine grinding below 50 µm.  Using an alternative model  
would be a better choice in this situation.

Bond's  equation is  one  in  a  large  family of  models.   Related  equations  better  suited  to  fine  
grinding include the “signature plot”, Von Rittinger's model and Charles' equation.  These models have a 
similar  form to Bond's  and can be fit  to industrial  regrind mills and laboratory tests using the simple 
regression tools in the charts of computer spreadsheets.  Operators will find that fine grinding calculations 
are both easier and more accurate when using the alternative equations to fit their regrind milling surveys 
or when performing laboratory regrind mill scale-up for plant design.  

None of these models are new: Charles' equation was published in 1957 and Von Rittinger's model 
was proposed in 1867.  A quick refresh how to apply these equations can turn these oddities from the 
undergraduate curriculum into useful tools for plant optimization.  They can be fit  to any type of mill  
including stirred and tumbling ball mills.  
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INTRODUCTION

Building  a  case  for  fine  grind  modelling  requires  reviewing  some  theory  before  building  a 
framework for doing fine grinding calculations.  The actual calculation procedure recommended is easy 
and can be applied by plant metallurgists.  Don’t be frightened by the theory; the end result is reasonably 
simple.

The observation that mineral breakage is related to the absorption of energy is usually attributed to 
Von Rittinger (1867).  Lynch and Rowland (2005) describe that the ability to empirical test and calibrate  
energy models of breakage didn’t exist until the widespread adoption of electric motors in the mining 
industry during the 1930’s  and 1949’s.   A series  of  technical  papers  published by the Allis  Chalmers 
company during the 1940’s  demonstrate  that  they were attempting to do such a calibration using Von 
Rittinger’s model which is usually stated as: “the energy consumed in the size reduction is proportional to 
the area of new surface produced.”

The calibration effort ultimately failed, and in 1952 an employee of Allis Chalmers named Fred 
Bond proposed a different model which came to bear his name (Lynch & Rowland, 2005).  Bond’s work 
index model was empirically fit to the wide variety of data collected over the previous decades and was 
particularly focused on the ball and rod mills that were in common use at the time (Bond, 1952).

Bond’s model wasn’t immediately accepted by the mineral dressing industry, and its applicability 
was debated for about a decade after publication.  Alternative models appeared, such as the model by 
Charles (1957) where an ore-specific coefficient and exponent on the size term would be measured.  The  
debate largely settled when Hukki (1962) published a reconciliation of the major competing models of the 
time and suggested that all models were valid, but each within a certain size range.

A crucial observation of Hukki is that Bond’s equation is generally only valid in the range of 
primary and secondary grinding (product sizes between 1 mm – 100 µm), and that different models apply  
below this size range.  This paper will discuss how to use those alternative models in an industrial setting.

Hukki’s Conjecture

Hukki performed some simple crushing and grinding tests at his laboratory in Helsinki where he 
mapped the consumption of specific energy from a “large” size, roughly representing a primary crusher 
discharge, down to as fine a size as was easily achieved in his laboratory.  The result is shown in Figure 1 
where the coarse sizes absorb relatively little energy to break to smaller sizes, whereas the finest  size 
absorb a great deal of energy to break.  Some component of this observed energy is likely the inefficiency 
of the apparatus used, but it is reasonable to assume that the largest component of the increasing energy 
requirements at fine sizes is due to the comminution energy being absorbed by the ore.

Hukki proposed that all power-based comminution models descend from a single relationship, 
shown in Equation (1).  The variable exponent -f(x) is required because of the varying slope observed in 
Figure 1.

dE
dx

=−K x−f (x)
( 1 )
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For  a  sufficiently narrow range of  sizes,  the  exponent  can  be  assumed to be  constant.   One 
solution of this differential equation is given in Equation (2):

E=C (P80
−α−F80

−α) ( 2 )

In this form, it is obvious that Bond’s equation results if C = (10 Wi) and α = ½.  If the exponent α 
is measured experimentally, then Equation (2) becomes Charles’ equation.

Hukki’s Conjecture includes the observation that the slope, hence the exponent -f(x), varies with 
particle size.   Roughly measuring the slopes in  Figure 1 and plotting at the mid-points of the base-10 
logarithms gives the variation of the exponent shown in Figure 2.

In Hukki’s example, Bond’s equation with exponent of -½ fits grinding to the 1 mm size range, 
roughly the product size expected from a rod mill.  The exponent in ball mill size range, around 100 µm, is 
close to -1, the exponent predicted by Von Rittinger’s model.  This is only one result (Hukki acknowledges 
it is “hypothetical”) and other ore types tested by other authors can give different curves, such as the three  
results from Levin (1989) for a CuNi matte (H1004), a uranium ore (H679) and a ferrochrome sample 
(J769).  

The exponents from Levin’s work vary for each material, and along with the coefficient, can be 
considered as a measurable property of a material.  This suggests that any model of fine grinding requires 
two measured parameters, a coefficient and an exponent.
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Figure 1: Hukki's Conjecture (Hukki, 1962)



Presented at the annual meeting of the Canadian Mineral Processors, Jan 2017, Ottawa, Canada.

Figure 3: Comparing Hukki's example to data by Levin (1989)
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Figure 2: Variation of Hukki’s exponent -f(x) with particle size
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METHODOLOGY

A fine-grinding model can be constructed using a chart in the form of specific energy versus P 80 

size, as in Figure 3, and the regression functions your preferred spreadsheet.  At least two points are needed 
to construct such a chart, and if two surveys are not available then a usable model is still  possible by 
assuming a suitable exponent.

The equation used in fine grinding is shown as Equation (3).  The P80 term overwhelms the F80 

term in Equation (2) at  fine sizes,  so the feed size is  negligible and can be dropped.  Moreover,  in a  
regrinding application, the concentrate feed size is usually fixed and does not vary with different regrind 
mill circuit equipment or configuration.

E=C (P80
−α) ( 3 )

Laboratory test results

The easiest way to construct a fine grinding model is using laboratory test results.  The “signature 
plot” result of an Isamill™ laboratory test is already in the form of Equation (3) and can be used directly 
for modelling.  The Levin test, performed using a dry Bond ball mill work index apparatus, also gives a  
result in the form of Equation (3).  Both these tests provide a coefficient C and an exponent α measured for 
a particular sample.

Two other commonly used tests can be re-formulated to give estimates of fine grinding models in  
the form of Equation (3).  The Jar Mill test favoured by Metso gives a table of results of E and measured 
size x for a progressive batch grinding test; these results can be fitted as demonstrated in Figure 4.

A series of Bond ball mill work index tests run at different closing mesh sizes can be fitted in  
almost the same way.  Work out the specific energy from the test feed size to each test’s product size (solve 
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Figure 4: Jar mill test result, Merriam et al, 2015
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Bond’s equation), then plot the resulting E versus product size x as demonstrated in Figure 5.  Reminder 
that this will not be valid if you test “ore” but are modelling the regrind of “concentrate”; you need to test  
the concentrate.

Existing Operations

Fine grinding is often conducted to regrind a rougher flotation concentrate prior to cleaning.  As 
the concentrate is not the same composition as the ore ground in earlier comminution stages, it must be  
considered in isolation from the primary and secondary grinding circuits.  

The two-parameter procedure used in the laboratory is usually impractical in an operating plant 
because it is not possible to vary the grinding energy in a regrind circuit (where you could then measure the 
change in P80).  If you can run a couple of tests at varying energy input and P80 sizes, then you should 
certainly do that.  If you cannot, then you can assume an exponent (see Table 1 for suggested exponents) 
and use a single regrind survey (measuring specific energy at the mill pinion E, kWh/t and product P80 size 
x, µm) to solve for the coefficient.
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Figure 5: Fitting data from Aureus Mining (2012) Bond ball mill tests on gold ore
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Table 1: Suggested exponents for fine grinding applications

Material Exponent Equation Size range

Gold ore (hydrothermal, greenstone, silicate hosted) -0.9 E = C x -0.9 500 → 40 µm

Lead-zinc ore (massive sulphide) -1.0
-1.4

E = C x -1.0

E = C x -1.4
65 → 45 µm
45 → 5 µm

Porphyry ore (silica, feldspars, minor sulphides) -0.5 E = C x -0.5 235 → 78 µm

Copper rougher concentrate (chalcopyrite and pyrite) -1.5 E = C x -1.5 110→33 µm

Pyrite concentrate -2.0 E = C x -2.0 40 → 8 µm

Base metal matte (copper, nickel) -1.5 E = C x -1.5 300 → 60 µm

Iron ore (hematite, magnetite) -0.7

-1.8

E = C x -0.7

E = C x -1.8

160→75 µm

75 → 15 µm

Zinc concentrate (Gao et al, 2007) -1.2 E = C x -1.2 20 → 5 µm

Discussion, different classes of stirred mills

The measured specific energy consumption in grinding is a combination of the energy required to 
break apart the rock and the energy consumed (and wasted) by the mill.  For the purposes of this discussion  
we will  assume that all “efficient” machines will  give a similar model coefficient and exponent.  The 
reality is that certain machines will be more efficient in a particular size range; this is due to a variety of  
factors including smaller media being better suited to fine grinding, differences in classification efficiency 
and circulating loads (internal to the machine and external), and so on.  Figure 6 shows an example of a 
comparison of fine grinding efficiency of two classes of equipment written by the vendor of the “blue”  
equipment that  demonstrates superiority over the “red” equipment.   The “red” vendor presumably has 
similar diagrams showing the opposite conclusion.

If you build a model for your particular type of equipment on your material at the size range that  
you expect to be working with, then that model should be valid for modelling.  If you change from a very 
inefficient type of equipment (example, a tube mill) to one that is more efficient (a stirred mill), then you 
should update your model.  

The Author suggests that all modern stirred mills can be considered equivalent for conceptual 
design in the typical regrind size ranges (40 to 75 µm).  Equipment vendors may have different opinions.
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CONCLUSIONS

• The widely-used Bond equation was based on curve-fitting a large set of data.  The size term 
(1/√x), which corresponds to an exponent of –0.5, is just an average of a large data set.

• Hukki’s Conjecture is that the exponent on the size term varies with size and material.  Bond’s 
equation is a particular case where the material is “typical ore” and the size range is around 1 mm.

• Fine grinding exponents should be material-dependent, and often particle size dependent.  Rarely 
do materials demonstrate Bond’s exponent of –0.5 below 100 µm.

• Predictions of performance of fine grinding equipment should not be based on Bond’s equation; 
use  an  alternative  equation  (Equation  3)  with  a  measured,  material-specific  coefficient  and 
exponent.
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Figure 6 – Ernest Henry Mining small scale test work (Burford & Niva, 2008)

Y=10,090 x-1.8147 Y=3E6 x-3.1485



WORKED EXAMPLES

Laboratory test result, conceptual design

A conceptual  regrind stirred mill  design based on the laboratory jar  mill  test  result  shown in 
Figure  4 (which  already includes  a  0.65  factor  for  stirred  milling)  would  have  the  model  equation: 
E = 8109 x -1.96 to regrind a rougher concentrate to a specified P80 value of x.  This model is valid for F80 of 
110 µm and P80 in the range of 53 µm to 33 µm.  Given the design criteria of:

• a desired product size of 45 µm;

• a desired regrind circuit throughput of 10 tonnes per hour; and

• a desired design allowance of 15%.

The required stirred mill motor output power would be 8109 (45)-1.96 × 10 × 1.15 = 54 kW

Operating plant, adding capacity

An  operating  plant  has  two  small  regrind  ball  mills  in  parallel  treating  a  copper  porphyry 
concentrate and wants to predict the grind that can be achieved by adding a third identical regrind ball mill  
in parallel with the existing two.  A mill survey was conducted where 43 dry t/h of combined regrind mill 
feed (F80 = 180 µm) consumed 483 kW + 474 kW (measured at the motor input) and resulted in a 63 µm 
cyclone overflow P80 size.

• First correct the motor power so it represents the power at the mill shell.  The motor name-plate 
says the motor efficiency is 0.958 and allow 0.985 efficiency for the pinion & gear. Motor power  
at the mill shell = (483 + 474) × 0.958 × 0.985 = 903 kW.

• Specific energy consumption, E = 903 kW ÷ 43 t/h = 21 kWh/t

• Select the exponent (-1.5) from Table 1

• Construct equation (3):  E = C (x)-α ; 21 = C (63)-1.5 

• Solve for C:  C = 21 × (63)1.5 = 10,501 (unitless)

Now add the third regrind mill.   Because the feed rate  is  the same and there is  more power 
available, E becomes (21 × 3/2) = 31.5 kWh/t.  Now solve for x using the value C determined in the survey.

• E = C (x)-α ; 31.5 = 10501 (x)-1.5 

• x = (31.5 ÷ 10501)-(1/1.5) = 48 µm

If this calculation were performed using the Bond operating work index (OWi = 40.8 kWh/t), the 
predicted size would be 43 µm.
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Operating plant, higher throughput

Use the same example plant as above with the same survey data.  What would be the effect on the  
grind size of the two existing regrind mills if the throughput were to increase to 50 t/h?

• The same regrind mill power is available, 903 kW at the shell.  The higher throughput means the 
specific energy consumption will decrease: E = 903 kW ÷ 50 t/h = 18.1 kWh/t

•   E = C (x)-α ; 18.1 = 10501 (x)-1.5 ; x = 70 µm.
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